¡

Oyster Experiment Funded by US EPA – Much Needed Scientific Analysis of Oyster Nitrogen Removal Efficacy

Project Partners

wrwa647jpg  csp-logo-bw  smast-logo

In September, 2016 it was announced that UMass Dartmouth School for Marine Science and Technology (SMAST) researchers have been awarded $525,967 by the U.S. Environmental Protection Agency to determine whether the development of oyster colonies can help restore southeastern Massachusetts estuaries and salt ponds endangered by high nitrogen levels. The Westport River Watershed Alliance (WRWA) is thrilled to partner with the Coastal Systems Program (CSP) UMass Dartmouth (SMAST) on a new project funded by a grant from the US EPA Southeast New England Program for Coastal Watershed Restoration.

The grant is part of a $4.6 million program to develop innovative, cost-effective strategies to protect coastal waters in southeastern Massachusetts and Rhode Island. The projects are intended to identify, test, and promote effective new regional approaches in critical areas such as water monitoring, watershed planning, nutrient and/or septic management, and resilience to climate change.

The UMass Dartmouth initiative, led by Dr. Brian Howes and Dr. Roland Samimy at SMAST’s Coastal Systems Program, will use the Westport River and Cockeast Pond as a natural laboratory to measure how oysters can reduce nitrogen levels that destroy fish and other marine wildlife habitats. If proven successful, the strategy, which utilizes the natural power of the oyster to filter and clean water, could help reduce the need for high cost solutions such as expanded wastewater treatment systems. The first stage of the project is ongoing and involves a small scale viability test to determine if the oysters will survive in the Pond’s fluctuating temperature and salinity conditions. Assuming oysters are capable of surviving in Cockeast Pond, a larger scale experiment will be initiated in the summer 2017 using locally grown oyster seed from Riptide Oysters of Westport, MA. This full scale experiment will be geared towards measuring changes in nitrogen levels in the pond as a result of oyster filtration of the water column and the corresponding rebounding of native aquatic species. The experiment will be continued into 2018 and 2019 to quantify the effects on water quality in Cockeast Pond as the oysters grow to full size and to determine the most effective ways to deploy large numbers of oysters for maximum water quality improvement and minimum affect on the useability of the resource. So far just over 30,000 oysters have been placed in the pond in 15 cages, constructed of high quality, industrial grade vinyl coated wire. The full scale experiment will involve around 500,000 oysters over approximately 2/3 of an acre of the 90+ acre pond (less than 1% of the total pond area).

WRWA’s role in this project will be multi-faceted and will focus on both science and outreach. We have had a sampling program for Cockeast Pond for many years and will continue to perform all water quality sampling in coordination with the CSP. We will also be involved in the set-up of the various oyster gear as well as the deployment and maintenance of the oysters. Additionally, WRWA will engage in community outreach by distributing information to residents regarding the project and its results on our website and Facebook page. We will work closely with the CSP to include videos, data, and other relevant information gathered for the project. We will also assist in arranging and participate in local workshops and presentations.

“Addressing the nitrogen problem along the SouthCoast, Cape Cod and the South Shore will cost billions of dollars if we only consider traditional strategies such as bigger wastewater treatment plants and more sewer lines,” Dr. Howes said. “We just don’t have the time or money for that course. It is, therefore, imperative that we find soft solutions that leverage nature, in this case the oyster, to make progress.”

These projects are funded through EPA’s Southeast New England Program (SNEP). Since its launch in 2014, SNEP’s mission has been to seek and adopt transformative environmental management. The program’s geographic area encompasses the coastal watersheds from Westerly, Rhode Island to Chatham, Massachusetts, and includes Narragansett Bay and all other Rhode Island coastal waters, Buzzards Bay, and southern Cape Cod as well as the islands of Block Island, Martha’s Vineyard, and Nantucket. While this research project is being undertaken in the Town of Westport, the results are meant to be transferrable to all the towns in the region that are seeking cost effective and innovative ways to push forward with estuarine restoration. Moreover, this investigation does not preclude the Town from looking into ways to reduce nutrient load from the Cockeast Pond watershed as a parallel effort.

Project Update November 2016

The Westport River Watershed Alliance (WRWA) is working with the Coastal Systems Program (CSP) UMass Dartmouth (SMAST) on a project funded by a grant from the US EPA Southeast New England Program for Coastal Watershed Restoration (see October’s River News for more info). The UMass Dartmouth initiative, led by Dr. Brian Howes and Dr. Roland Samimy at SMAST’s Coastal Systems Program, is utilizing the Westport River and Cockeast Pond as a natural laboratory to measure how oysters improve water clarity and potentially reduce elevated nitrogen levels which destroy fish and other marine wildlife habitats. Oysters get a lot of attention because they filter water. This can lead to the assumption that oysters are constantly removing nutrients from the water, but not all of the nutrients that oysters filter stay in their tissues. Many get deposited into the water or sediment as waste. While scientists have studied and quantified the removal of nutrients through harvested oysters, little is known about what happens to nutrients in waste and associated transformations that occur in the sediments exposed to oyster detritus.

Oysters’ ability to improve water quality by filtration has been well known, but many related questions remain. Such as, does oyster filtration always lead to nitrogen removal in nearby sediments? How much nitrogen is removed, and under what conditions? Do wild oysters have the same amount of nitrogen as those raised in aquaculture, and does this vary by location? And, can oysters’ work to remove nitrogen count toward nutrient reduction goals set forth in the TMDL (total maximum daily load)?

How do oysters remove nitrogen? Oysters are filter feeders; they remove particles from the water that contain nitrogen, primarily in algae (phytoplankton), and use it to build their tissues and shells or move it to bottom sediments in their biodeposits (pseudofeces). Benthic bivalves are important contributors of nitrogen (usually in the form of ammonium, NH4+) to both subtidal and intertidal systems. Once the nitrogen is in the sediments, microbes may break it down and release nitrogen gas into the atmosphere, a process called denitrification, removing nitrogen from the estuary. Also, all the nitrogen that is in any oysters that are harvested is removed from the system as well.

In September over 30,000 oysters were placed at four different locations in in Cockeast pond in 15 floating bags and 4 bottom cages, constructed of high quality, industrial grade vinyl coated wire. SMAST scientists have been checking on the oysters and after two months in the pond, they seem to be surviving well. Oysters in racks positioned in the lower west and east section of the pond, closest to the herring run were faring the best. The racks in the upper west and the mid-east sections of the pond showed some mortality.  Survival/mortality was quantified at each location and a sub sample of oysters from each bottom cage was measured, weighed and brought back to SMAST to be analyzed for nitrogen content in the meat and shells.   With the winter fast approaching, all the sets of racks and bags were sunk in 1.3 meters of water near the center of the pond. Next spring the full scale experiment will begin and involve around 500,000 oysters over approximately 2/3 of an acre of the 90+ acre pond (less than 1% of the total pond area).

WRWA is pleased to work with CSP scientists. Broadly, we are interested in the ecological services the oysters provide. Additionally, this research on oysters may help decision makers and citizens across the southeastern Massachusetts region understand the role of oyster reefs as natural capital, thus opening the door to greater investments in nature-based restoration techniques. This is more than just revitalizing an industry, it is the inherent ecological values of the oysters, including improving water quality and protecting shorelines we promote while also maintaining the unique cultural dimension of the region.

If you have questions please feel free to contact the project team by email -click here to contact Roland Samimy or Roberta Carvalho

Also stay tuned for periodic updates and future presentations.  This is truly a great opportunity for the Town of Westport to get cutting edge research that is directly applicable to its nutrient management effort but also broadly beneficial to the region.